Full width home advertisement

Travel the world

Climb the mountains

Post Page Advertisement [Top]

JavaNeural Network

Neural Network Programming with Java By Alan Souza, Fábio Soares PDF

Neural Network Programming with Java By Alan Souza, Fábio Soares PDF

Neural-Network-Programming-with-Java

Informations about the book:

Title: Neural Network Programming with Java

AuthorLentin Joseph

Size: 5.8

Format: EPUB

Year: 2016

Pages: 244


Book Contents:

Chapter 1: Getting Started with Neural Networks 
Discovering neural networks 
Why artificial neural network? 
How neural networks are arranged 
The very basic element – artificial neuron 
Giving life to neurons – activation function 
The fundamental values – weights 
An important parameter – bias 
The parts forming the whole – layers 
Learning about neural network architectures 
Monolayer networks 
Multilayer networks 
Feedforward networks 
Feedback networks 
From ignorance to knowledge – learning process 
Let the implementations begin! Neural networks in practice 
Summary 
Chapter 2: How Neural Networks Learn 
Learning ability in neural networks 
How learning helps to solve problems 
Learning paradigms 
Supervised learning 
Unsupervised learning 
Systematic structuring – learning algorithm 
Two stages of learning – training and testing 
The details – learning parameters 
Error measurement and cost function 
Table of Contents
[ ii ]
Examples of learning algorithms 
Perceptron 
Delta rule 
Coding of the neural network learning 
Learning parameter implementation 
Learning procedure 
Class definitions 
Two practical examples 
Perceptron (warning system) 
ADALINE (traffic forecast) 
Summary 
Chapter 3: Handling Perceptrons 
Studying the perceptron neural network 
Applications and limitations of perceptrons 
Linear separation 
Classical XOR case 
Popular multilayer perceptrons (MLPs) 
MLP properties 
MLP weights 
Recurrent MLP
MLP structure in an OOP paradigm 
Interesting MLP applications 
Classification in MLPs 
Regression in MLPs 
Learning process in MLPs 
Simple and very powerful learning algorithm – Backpropagation 
Elaborate and potent learning algorithm – Levenberg–Marquardt 
Hands-on MLP implementation! 
Backpropagation in action 
Exploring the code 
Levenberg–Marquardt implementation 
Practical application – types of university enrolments 
Summary 
Chapter 4: Self-Organizing Maps 
Neural networks' unsupervised way of learning 
Some unsupervised learning algorithms 
Competitive learning or winner takes all 
Table of Contents
[ iii ]
Kohonen self-organizing maps (SOMs) 
One-Dimensional SOM 
Two-Dimensional SOM 
Step-by-step of SOM learning 
How to use SOMs 
Coding of the Kohonen algorithm 
Exploring the Kohonen class 
Kohonen implementation (clustering animals) 
Summary 
Chapter 5: Forecasting Weather 
Neural networks for prediction problems 
No data, no neural net – selecting data 
Knowing the problem – weather variables 
Choosing input and output variables 
Removing insignificant behaviors – Data filtering 
Adjusting values – data preprocessing 
Equalizing data – normalization 
Java implementation for weather prediction 
Plotting charts 
Handling data files 
Building a neural network for weather prediction
Empirical design of neural networks 
Choosing training and test datasets 
Designing experiments 
Results and simulations 
Summary 
Chapter 6: Classifying Disease Diagnosis 117
What are classification problems, and how can neural 
be applied to them? 
A special type of activation function – Logistic regression 
Multiple classes versus binary classes 
Comparing the expected versus produced results – the
confusion matrix 
Classification measures – sensitivity and specificity 
Applying neural networks for classification 
Disease diagnosis with neural networks 
Using ANN to diagnose breast cancer 
Applying NN for an early diagnosis of diabetes 
Summary 
Table of Contents
[ iv ]
Chapter 7: Clustering Customer Profiles 
Clustering task 
Cluster analysis 
Cluster evaluation and validation 
External validation 
Applied unsupervised learning 
Neural network of radial basis functions 
Kohonen neural network 
Types of data 
Customer profiling 
Preprocessing data 
Implementation in Java 
Card credit analysis for customer profiling 
Summary 
Chapter 8: Pattern Recognition (OCR Case) 
What is pattern recognition all about? 
Definition of classes among tons of data 
What if the undefined classes are undefined? 
External validation 
How to apply neural networks in pattern recognition 
Preprocessing the data 
The OCR problem 
Simplifying the task – digit recognition 
Approach to digit representation 
Let the coding begin! 
Generating data 
Building the neural network 
Testing and redesigning – trial and error 
Results 
Summary 
Chapter 9: Neural Network Optimization and Adaptation 
Common issues in neural network implementations 
Input selection 
Data correlation 
Dimensionality reduction 
Data filtering 
Structure selection
Table of Contents
[ v ]
Online retraining
Stochastic online learning 
Implementation 
Application 
Adaptive neural networks
Adaptive resonance theory 
Implementation 
Summary 
Appendix A: Setting up the NetBeans Environment 
Download and install NetBeans 
Setting up the NetBeans environment 
Importing a project 
Programming and running code with NetBeans 
Debugging with NetBeans 
Appendix B: Setting Up the Eclipse Environment 
Download and install Eclipse 
Setting up the Eclipse environment 
Importing a project 
Programming and running code with the Eclipse IDE 
Debugging with the Eclipse IDE 
Appendix C: References 
Chapter 1 – Getting Started with Neural Networks 
Chapter 2 – How Neural Networks Learn 
Chapter 3 – Working with Perceptrons 
Chapter 4 – Self-Organizing Maps 
Chapter 5 – Forecasting the Weather 
Chapter 6 – Disease Diagnosis 
Chapter 7 – Clustering Customer Profiles 
Chapter 8 – Pattern Recognition (the OCR Case) 
Chapter 9 – Neural Network Optimization and Adaptation

png+button

No comments:

Post a Comment

Bottom Ad [Post Page]