Full width home advertisement

Travel the world

Climb the mountains

Post Page Advertisement [Top]

bookNeural NetworkPython

Hands-On Neural Networks: Learn how to build and train your first neural network model using Python By Leonardo De Marchi, Laura Mitchell ¨PDF

Hands-On Neural Networks: Learn how to build and train your first neural network model using Python By Leonardo De Marchi, Laura Mitchell ¨PDF

Hands-On-Neural-Networks

Informations about the book:


TitleHands-On Neural Networks: Learn how to build and train your first neural network model using Python

AuthorLentin Joseph

Size: 22.8



Format: EPUB

Year: 2019

Pages: 269


Book Contents:


Section 1: Getting Started
Chapter 1: Getting Started with Supervised Learning 
History of AI 
An overview of machine learning
Supervised learning 
Unsupervised learning 
Semi-supervised learning 
Reinforcement learning 
Environment setup 
Understanding virtual environments 
Anaconda 
Docker 
Supervised learning in practice with Python 
Data cleaning 
Feature engineering 
How deep learning performs feature engineering 
Feature scaling 
Feature engineering in Keras 
Supervised learning algorithms 
Metrics 
Regression metrics 
Classification metrics 
Evaluating the model 
TensorBoard 
Summary 
Chapter 2: Neural Network Fundamentals 
The perceptron 
Implementing a perceptron 
Keras 
Implementing perceptron in Keras 
Feedforward neural networks 
Introducing backpropagation 
Activation functions 
Sigmoid 
Softmax 
Tanh 
ReLU 
Table of Contents
[ ii ]
Keras implementation 
The chain rule 
The XOR problem 
FFNN in Python from scratch 
FFNN Keras implementation 
TensorBoard 
TensorBoard on the XOR problem 
Summary 
Section 2: Deep Learning Applications
Chapter 3: Convolutional Neural Networks for Image Processing 
Understanding CNNs 
Input data 
Convolutional layers 
Pooling layers 
Stride 
Max pooling 
Zero padding 
Dropout layers 
Normalization layers 
Output layers 
CNNs in Keras 
Loading the data 
Creating the model 
Network configuration 
Keras for expression recognition 
Optimizing the network 
Summary 
Chapter 4: Exploiting Text Embedding 
Machine learning for NLP 
Rule-based methods 
Understanding word embeddings 
Applications of words embeddings 
Word2vec 
Word embedding in Keras 
Pre-trained network 
GloVe 
Global matrix factorization 
Using the GloVe model 
Text classification with GloVe 
Summary 
Chapter 5: Working with RNNs 
Understanding RNNs 
Theory behind CNNs 
Table of Contents
[ iii ]
Types of RNNs 
One-to-one 
One-to-many 
Many-to-many 
The same lag 
A different lag 
Loss functions 
Long Short-Term Memory 
LSTM architecture 
LSTMs in Keras 
PyTorch basics 
Time series prediction 
Summary 
Chapter 6: Reusing Neural Networks with Transfer Learning 
Transfer learning theory 
Introducing multi-task learning
Reusing other networks as feature extractors 
Implementing MTL 
Feature extraction 
Implementing TL in PyTorch 
Summary 
Section 3: Advanced Applications
Chapter 7: Working with Generative Algorithms 
Discriminative versus generative algorithms 
Understanding GANs 
Training GANs 
GAN challenges 
GAN variations and timelines 
Conditional GANs 
DCGAN 
ReLU versus Leaky ReLU 
DCGAN – a coded example 
Pix2Pix GAN 
StackGAN 
CycleGAN 
ProGAN 
StarGAN 
StarGAN discriminator objectives 
StarGAN generator functions 
BigGAN 
StyleGAN 
Style modules 
StyleGAN implementation 
Deepfakes 
Table of Contents
[ iv ]
RadialGAN 
Summary 
Further reading 
Chapter 8: Implementing Autoencoders 
Overview of autoencoders 
Autoencoder applications 
Bottleneck and loss functions 
Standard types of autoencoder
Undercomplete autoencoders 
Example 
Visualizing with TensorBoard 
Visualizing reconstructed images 
Multilayer autoencoders 
Example 
Convolutional autoencoders 
Example 
Sparse autoencoders 
Example 
Denoising autoencoders 
Example 
Contractive autoencoder 
Variational Autoencoders 
Training VAEs 
Example 
Summary 
Further reading 
Chapter 9: Deep Belief Networks 
Overview of DBNs 
BBNs 
Predictive propagation 
Retrospective propagation 
RBMs 
RBM training 
Example – RBM recommender system 
Example – RBM recommender system using code 
DBN architecture 
Training DBNs 
Fine-tuning 
Datasets and libraries 
Example – supervised DBN classification 
Example – supervised DBN regression 
Example – unsupervised DBN classification 
Summary 
Further reading 
Table of Contents
[ v ]
Chapter 10: Reinforcement Learning 
Basic definitions 
Introducing Q-learning 
Learning objectives 
Policy optimization 
Methods of Q-learning 
Playing with OpenAI Gym 
The frozen lake problem 
Summary 
Chapter 11: Whats Next? 
Summarizing the book 
Future of machine learning 
Artificial general intelligence 
Ethics in AI 
Interpretability 
Automation 
AI safety 
AI ethics 
Accountability 
Conclusions 
png+button

No comments:

Post a Comment

Bottom Ad [Post Page]