Full width home advertisement

Travel the world

Climb the mountains

Post Page Advertisement [Top]

bookMachine LearningPython

Machine Learning For Dummies By John Paul Mueller & Luca Massaron

Machine Learning For Dummies By John Paul Mueller & Luca Massaron


Informations about the book:

TitleMachine Learning For Dummies 

AuthorJohn Paul Mueller & Luca Massaron

Size: 12

Format: PDF

Year: 2016

Pages: 435

Book Contents:

INTRODUCTION 
About This Book  
Foolish Assumptions  
Icons Used in This Book  
Beyond the Book  
Where to Go from Here  
PART 1: INTRODUCING HOW MACHINES LEARN  
CHAPTER 1: Getting the Real Story about AI  
Moving beyond the Hype  
Dreaming of Electric Sheep  
Understanding the history of AI and ­machine learning  
Exploring what machine learning can do for AI  
Considering the goals of machine learning  
Defining machine learning limits based on hardware 
Overcoming AI Fantasies  
Discovering the fad uses of AI and machine learning  
Considering the true uses of AI and ­machine learning   
Being useful; being mundane 
Considering the Relationship between AI and Machine Learning  
Considering AI and Machine Learning Specifications  
Defining the Divide between Art and Engineering  
CHAPTER 2: Learning in the Age of Big Data 
Defining Big Data  
Considering the Sources of Big Data  
Building a new data source  
Using existing data sources  
Locating test data sources 
Specifying the Role of Statistics in Machine Learning  
Understanding the Role of Algorithms  
Defining what algorithms do  
Considering the five main techniques   
Defining What Training Means  
CHAPTER 3: Having a Glance at the Future 
Creating Useful Technologies for the Future  
Considering the role of machine learning in robots 
Using machine learning in health care 
Creating smart systems for various needs 
Using machine learning in industrial settings  
Understanding the role of updated ­processors and other hardware  
Discovering the New Work Opportunities with Machine Learning  
Working for a machine  
Working with machines  
Repairing machines  
Creating new machine learning tasks 
Devising new machine learning ­environments  
Avoiding the Potential Pitfalls of Future Technologies  
PART 2: PREPARING YOUR LEARNING TOOLS  
CHAPTER 4: Installing an R Distribution  
Choosing an R Distribution with Machine Learning in Mind  
Installing R on Windows 
Installing R on Linux  
Installing R on Mac OS X  
Downloading the Datasets and Example Code 
Understanding the datasets used in this book 
Defining the code repository  
CHAPTER 5: Coding in R Using RStudio  
Understanding the Basic Data Types 
Working with Vectors  
Organizing Data Using Lists  
Working with Matrices  
Creating a basic matrix  
Changing the vector arrangement 
Accessing individual elements 
Naming the rows and columns  
Interacting with Multiple Dimensions Using Arrays  
Creating a basic array 
Naming the rows and columns  
Creating a Data Frame    
Understanding factors   
Creating a basic data frame  
Interacting with data frames   
Expanding a data frame  
Performing Basic Statistical Tasks 
Making decisions 
Working with loops   
vi Machine Learning For Dummies Performing looped tasks without loops 
Working with functions 
Finding mean and median 
Charting your data 
CHAPTER 6: Installing a Python Distribution  
Choosing a Python Distribution with Machine Learning in Mind  
Getting Continuum Analytics Anaconda 
Getting Enthought Canopy Express  
Getting pythonxy  
Getting WinPython  
Installing Python on Linux  
Installing Python on Mac OS X  
Installing Python on Windows  
Downloading the Datasets and Example Code  
Using Jupyter Notebook  
Defining the code repository  
Understanding the datasets used in this book  
CHAPTER 7: Coding in Python Using Anaconda  
Working with Numbers and Logic  
Performing variable assignments  
Doing arithmetic  
Comparing data using Boolean expressions  
Creating and Using Strings  
Interacting with Dates 
Creating and Using Functions  
Creating reusable functions  
Calling functions  
Working with global and local variables  
Using Conditional and Loop Statements  
Making decisions using the if statement 
Choosing between multiple options using nested decisions  
Performing repetitive tasks using for  
Using the while statement  
Storing Data Using Sets, Lists, and Tuples  
Creating sets  
Performing operations on sets  
Creating lists  
Creating and using tuples  
Defining Useful Iterators  
Indexing Data Using Dictionaries  
Storing Code in Modules 
CHAPTER 8: Exploring Other Machine Learning Tools  
Meeting the Precursors SAS, Stata, and SPSS  
Learning in Academia with Weka  
Accessing Complex Algorithms Easily Using LIBSVM  
Running As Fast As Light with Vowpal Wabbit  
Visualizing with Knime and RapidMiner  
Dealing with Massive Data by Using Spark  
PART 3: GETTING STARTED WITH THE MATH BASICS 
CHAPTER 9: Demystifying the Math Behind
Machine Learning 
Working with Data  
Creating a matrix  
Understanding basic operations  
Performing matrix multiplication  
Glancing at advanced matrix operations  
Using vectorization effectively  
Exploring the World of Probabilities  
Operating on probabilities  
Conditioning chance by Bayes’ theorem  
Describing the Use of Statistics  
CHAPTER 10: Descending the Right Curve  
Interpreting Learning As Optimization  
Supervised learning  
Unsupervised learning  
Reinforcement learning  
The learning process   
Exploring Cost Functions  
Descending the Error Curve  
Updating by Mini-Batch and Online  
CHAPTER 11: Validating Machine Learning  
Checking Out-of-Sample Errors   
Looking for generalization  
Getting to Know the Limits of Bias  
Keeping Model Complexity in Mind  
Keeping Solutions Balanced 
Depicting learning curves  
Training, Validating, and Testing  
Resorting to Cross-Validation  
Looking for Alternatives in Validation 
Optimizing Cross-Validation Choices  
Exploring the space of hyper-parameters 
Avoiding Sample Bias and Leakage Traps  
Watching out for snooping  
CHAPTER 12: Starting with Simple Learners  
Discovering the Incredible Perceptron  
Falling short of a miracle  
Touching the nonseparability limit  
Growing Greedy Classification Trees  
Predicting outcomes by splitting data  
Pruning overgrown trees  
Taking a Probabilistic Turn  
Understanding Naïve Bayes  
Estimating response with Naïve Bayes  
PART 4: LEARNING FROM SMART AND BIG DATA 
CHAPTER 13: Preprocessing Data  
Gathering and Cleaning Data   
Repairing Missing Data  
Identifying missing data  
Choosing the right replacement strategy  
Transforming Distributions  
Creating Your Own Features   
Understanding the need to create features  
Creating features automatically  
Compressing Data  
Delimiting Anomalous Data  
CHAPTER 14: Leveraging Similarity  
Measuring Similarity between Vectors  
Understanding similarity  
Computing distances for learning  
Using Distances to Locate Clusters  
Checking assumptions and expectations 
Inspecting the gears of the algorithm  
Tuning the K-Means Algorithm  
Experimenting K-means reliability  
Experimenting with how centroids converge   
Searching for Classification by K-Nearest Neighbors  
Leveraging the Correct K Parameter  
Understanding the k parameter   
Experimenting with a flexible algorithm  
CHAPTER 15: Working with Linear Models the Easy Way  
Starting to Combine Variables  
Mixing Variables of Different Types  
Switching to Probabilities  
Specifying a binary response  
Handling multiple classes  
Guessing the Right Features  
Defining the outcome of features that don’t work together  
Solving overfitting by using selection  
Learning One Example at a Time  
Using gradient descent  
Understanding how SGD is different  
CHAPTER 16: Hitting Complexity with Neural Networks  
Learning and Imitating from Nature 
Going forth with feed-forward  
Going even deeper down the rabbit hole  
Getting Back with Backpropagation  
Struggling with Overfitting  
Understanding the problem  
Opening the black box  
Introducing Deep Learning  
CHAPTER 17: Going a Step beyond Using Support
Vector Machines   
Revisiting the Separation Problem: A New Approach   
Explaining the Algorithm     
Getting into the math of an SVM   
Avoiding the pitfalls of nonseparability  
Applying Nonlinearity  
Demonstrating the kernel trick by example   
Discovering the different kernels  
Illustrating Hyper-Parameters   
Classifying and Estimating with SVM   
CHAPTER 18:Resorting to Ensembles of Learners  
Leveraging Decision Trees 
Growing a forest of trees  
Understanding the importance measures  
Working with Almost Random Guesses  
Bagging predictors with Adaboost  
Boosting Smart Predictors  
Meeting again with gradient descent  
Averaging Different Predictors   
PART 5: APPLYING LEARNING TO REAL PROBLEMS  
CHAPTER 19: Classifying Images  
Working with a Set of Images  
Extracting Visual Features  
Recognizing Faces Using Eigenfaces  
Classifying Images  
CHAPTER 20: Scoring Opinions and Sentiments  
Introducing Natural Language Processing  
Understanding How Machines Read  
Processing and enhancing text  
Scraping textual datasets from the web  
Handling problems with raw text  
Using Scoring and Classification  
Performing classification tasks  
Analyzing reviews from e-commerce  
CHAPTER 21:Recommending Products and Movies  
Realizing the Revolution  
Downloading Rating Data  
Trudging through the MovieLens dataset  
Navigating through anonymous web data 
Encountering the limits of rating data  
Leveraging SVD  
Considering the origins of SVD  
Understanding the SVD connection 
Seeing SVD in action  
PART 6: THE PART OF TENS  
CHAPTER 22: Ten Machine Learning Packages to Master  
Cloudera Oryx  
CUDA-Convnet  
ConvNetJS  
e1071  
gbm  
Gensim  
glmnet  
randomForest  
SciPy 
XGBoost   
CHAPTER 23: Ten Ways to Improve Your Machine
Learning Models 
Studying Learning Curves 
Using Cross-Validation Correctly  
Choosing the Right Error or Score Metric  
Searching for the Best Hyper-Parameters 
Testing Multiple Models  
Averaging Models  
Stacking Models  
Applying Feature Engineering  
Selecting Features and Examples  
Looking for More Data  


No comments:

Post a Comment

Bottom Ad [Post Page]