Full width home advertisement

Travel the world

Climb the mountains

Post Page Advertisement [Top]

bookData SciencePython

Python Data Science Handbook: Essential Tools for Working with Data By Jake VanderPlas

Python Data Science Handbook: Essential Tools for Working with Data By Jake VanderPlas PDF


Informations about the book:

TitlePython Data Science Handbook: Essential Tools for Working with Data

AuthorJake VanderPlas 

Size: 10.2

Format: PDF

Year: 2016

Pages: 548

Book Contents:

1 IPython: Beyond Normal Python  
Shell or Notebook?  
Launching the IPython Shell  
Launching the Jupyter Notebook  
Help and Documentation in IPython  
Accessing Documentation with ?  
Accessing Source Code with ??  
Exploring Modules with Tab Completion  
Keyboard Shortcuts in the IPython Shell  
Navigation Shortcuts  
Text Entry Shortcuts  
Command History Shortcuts  
Miscellaneous Shortcuts  
IPython Magic Commands  
Pasting Code Blocks: %paste and %cpaste  
Running External Code: %run  
Timing Code Execution: %timeit  
Help on Magic Functions: ?, %magic, and %lsmagic  
Input and Output History  
IPython’s In and Out Objects  
Underscore Shortcuts and Previous Outputs  
Suppressing Output  
Related Magic Commands  
IPython and Shell Commands  
Quick Introduction to the Shell  
Shell Commands in IPython  
Passing Values to and from the Shell  
Shell-Related Magic Commands  
Errors and Debugging  
Controlling Exceptions: %xmode  
Debugging: When Reading Tracebacks Is Not Enough  
Profiling and Timing Code  
Timing Code Snippets: %timeit and %time  
Profiling Full Scripts: %prun  
Line-by-Line Profiling with %lprun  
Profiling Memory Use: %memit and %mprun  
More IPython Resources  
Web Resources  
Books  
2 Introduction to NumPy 
Understanding Data Types in Python  
A Python Integer Is More Than Just an Integer  
A Python List Is More Than Just a List  
Fixed-Type Arrays in Python  
Creating Arrays from Python Lists  
Creating Arrays from Scratch  
NumPy Standard Data Types  
The Basics of NumPy Arrays  
NumPy Array Attributes  
Array Indexing: Accessing Single Elements  
Array Slicing: Accessing Subarrays  
Reshaping of Arrays  
Array Concatenation and Splitting  
Computation on NumPy Arrays: Universal Functions  
The Slowness of Loops  
Introducing UFuncs  
Exploring NumPy’s UFuncs  
Advanced Ufunc Features  
Ufuncs: Learning More  
Aggregations: Min, Max, and Everything in Between  
Summing the Values in an Array  
Minimum and Maximum  
Example: What Is the Average Height of US Presidents?  
Computation on Arrays: Broadcasting  
Introducing Broadcasting  
Rules of Broadcasting  
Broadcasting in Practice   
Comparisons, Masks, and Boolean Logic  
Example: Counting Rainy Days  
Comparison Operators as ufuncs  
Working with Boolean Arrays  
Boolean Arrays as Masks  
Fancy Indexing  
Exploring Fancy Indexing  
Combined Indexing  
Example: Selecting Random Points  
Modifying Values with Fancy Indexing  
Example: Binning Data  
Sorting Arrays  
Fast Sorting in NumPy: npsort and npargsort  
Partial Sorts: Partitioning  
Example: k-Nearest Neighbors  
Structured Data: NumPy’s Structured Arrays  
Creating Structured Arrays 
More Advanced Compound Types  
RecordArrays: Structured Arrays with a Twist  
On to Pandas  
3 Data Manipulation with Pandas  
Installing and Using Pandas  
Introducing Pandas Objects  
The Pandas Series Object  
The Pandas DataFrame Object  
The Pandas Index Object  
Data Indexing and Selection  
Data Selection in Series  
Data Selection in DataFrame  
Operating on Data in Pandas   
Ufuncs: Index Preservation  
UFuncs: Index Alignment  
Ufuncs: Operations Between DataFrame and Series  
Handling Missing Data  
Trade-Offs in Missing Data Conventions  
Missing Data in Pandas  
Operating on Null Values  
Hierarchical Indexing  
A Multiply Indexed Series  
Methods of MultiIndex Creation  
Indexing and Slicing a MultiIndex  
Rearranging Multi-Indices  
Data Aggregations on Multi-Indices  
Combining Datasets: Concat and Append  
Recall: Concatenation of NumPy Arrays  
Simple Concatenation with pdconcat  
Combining Datasets: Merge and Join  
Relational Algebra  
Categories of Joins  
Specification of the Merge Key  
Specifying Set Arithmetic for Joins  
Overlapping Column Names: The suffixes Keyword  
Example: US States Data  
Aggregation and Grouping  
Planets Data  
Simple Aggregation in Pandas  
GroupBy: Split, Apply, Combine  
Pivot Tables   
Motivating Pivot Tables  
Pivot Tables by Hand  
Pivot Table Syntax  
Example: Birthrate Data  
Vectorized String Operations  
Introducing Pandas String Operations  
Tables of Pandas String Methods  
Example: Recipe Database  
Working with Time Series  
Dates and Times in Python  
Pandas Time Series: Indexing by Time  
Pandas Time Series Data Structures  
Frequencies and Offsets  
Resampling, Shifting, and Windowing  
Where to Learn More  
Example: Visualizing Seattle Bicycle Counts  
High-Performance Pandas: eval() and query()  
Motivating query() and eval(): Compound Expressions  
pandaseval() for Efficient Operations  
DataFrameeval() for Column-Wise Operations  
DataFramequery() Method  
Performance: When to Use These Functions  
Further Resources   
4 Visualization with Matplotlib  
General Matplotlib Tips  
Importing matplotlib  
Setting Styles  
show() or No show()? How to Display Your Plots  
Saving Figures to File  
Two Interfaces for the Price of One  
Simple Line Plots  
Adjusting the Plot: Line Colors and Styles  
Adjusting the Plot: Axes Limits  
Labeling Plots  
Simple Scatter Plots   
Scatter Plots with pltplot  
Scatter Plots with pltscatter  
plot Versus scatter: A Note on Efficiency  
Visualizing Errors  
Basic Errorbars  
Continuous Errors  
Density and Contour Plots  
Visualizing a Three-Dimensional Function  
Histograms, Binnings, and Density  
Two-Dimensional Histograms and Binnings  
Customizing Plot Legends  
Choosing Elements for the Legend  
Legend for Size of Points  
Multiple Legends  
Customizing Colorbars  
Customizing Colorbars  
Example: Handwritten Digits  
Multiple Subplots  
pltaxes: Subplots by Hand  
pltsubplot: Simple Grids of Subplots  
pltsubplots: The Whole Grid in One Go  
pltGridSpec: More Complicated Arrangements  
Text and Annotation  
Example: Effect of Holidays on US Births  
Transforms and Text Position  
Arrows and Annotation    
Customizing Ticks  
Major and Minor Ticks  
Hiding Ticks or Labels  
Reducing or Increasing the Number of Ticks   
Fancy Tick Formats  
Summary of Formatters and Locators  
Customizing Matplotlib: Configurations and Stylesheets  
Plot Customization by Hand  
Changing the Defaults: rcParams  
Stylesheets  
Three-Dimensional Plotting in Matplotlib  
Three-Dimensional Points and Lines  
Three-Dimensional Contour Plots  
Wireframes and Surface Plots  
Surface Triangulations  
Geographic Data with Basemap  
Map Projections  
Drawing a Map Background  
Plotting Data on Maps  
Example: California Cities  
Example: Surface Temperature Data  
Visualization with Seaborn  
Seaborn Versus Matplotlib  
Exploring Seaborn Plots  
Example: Exploring Marathon Finishing Times  
Further Resources  
Matplotlib Resources  
Other Python Graphics Libraries  
5 Machine Learning  
What Is Machine Learning?  
Categories of Machine Learning  
Qualitative Examples of Machine Learning Applications 
Introducing Scikit-Learn  
Data Representation in Scikit-Learn  
Scikit-Learn’s Estimator API  
Application: Exploring Handwritten Digits 
Hyperparameters and Model Validation  
Thinking About Model Validation  
Selecting the Best Model  
Learning Curves  
Validation in Practice: Grid Search  
Feature Engineering   
Categorical Features  
Text Features  
Image Features  
Derived Features  
Imputation of Missing Data  
Feature Pipelines  
In Depth: Naive Bayes Classification  
Bayesian Classification  
Gaussian Naive Bayes  
Multinomial Naive Bayes  
When to Use Naive Bayes  
In Depth: Linear Regression  
Simple Linear Regression  
Basis Function Regression  
Regularization  
Example: Predicting Bicycle Traffic  
In-Depth: Support Vector Machines  
Motivating Support Vector Machines  
Support Vector Machines: Maximizing the Margin  
Example: Face Recognition  
Support Vector Machine Summary  
In-Depth: Decision Trees and Random Forests  
Motivating Random Forests: Decision Trees  
Ensembles of Estimators: Random Forests  
Random Forest Regression  
Example: Random Forest for Classifying Digits  
Summary of Random Forests  
In Depth: Principal Component Analysis  
Introducing Principal Component Analysis  
PCA as Noise Filtering  
Example: Eigenfaces  
Principal Component Analysis Summary  
In-Depth: Manifold Learning  
Manifold Learning: “HELLO”  
Multidimensional Scaling (MDS)  
MDS as Manifold Learning  
Nonlinear Embeddings: Where MDS Fails  
Nonlinear Manifolds: Locally Linear Embedding  
Some Thoughts on Manifold Methods  
Example: Isomap on Faces  
Example: Visualizing Structure in Digits  
In Depth: k-Means Clustering   
Introducing k-Means  
k-Means Algorithm: Expectation–Maximization  
Examples  
In Depth: Gaussian Mixture Models  
Motivating GMM: Weaknesses of k-Means  
Generalizing E–M: Gaussian Mixture Models  
GMM as Density Estimation  
Example: GMM for Generating New Data  
In-Depth: Kernel Density Estimation  
Motivating KDE: Histograms  
Kernel Density Estimation in Practice  
Example: KDE on a Sphere  
Example: Not-So-Naive Bayes  
Application: A Face Detection Pipeline  
HOG Features  
HOG in Action: A Simple Face Detector  
Caveats and Improvements  
Further Machine Learning Resources  
Machine Learning in Python  
General Machine Learning


No comments:

Post a Comment

Bottom Ad [Post Page]